

NewH2 KNOWLEDGE EXCHANGE SERIES -BREAKFAST FORUM In partnership with HunterNet

Wednesday 30th March 0800 – 0930

Theehouse Function Room Shorrland Building, University of Newcastle (Carloghan)

HUNTERNET

CONEW H2

SEATA

Deconstructing the world's problems into profitable carbon-negative solutions

Carbon Negative Hydrogen: Pathways to Net Zero -Hydrogen with Carbon Sequestration and Co-Benefits

New H2 Industry Forum

Wednesday 30th March, 2022

John Winter Director Engineering & Technical, SEATA Group

Craig Bagnall Director Environment & Regulatory, SEATA Group

Presentation Outline

- Carbon is Good (normally)
- Taking The Blanket Off the Planet The Need for Carbon *Removal* in addition to Emissions Reduction / Avoidance
- Carbon Negative Hydrogen Hydrogen with carbon sequestration & Co-Benefits
 - Advancements in Thermal Treatment from Linear to Circular
 - Carbon + Hydrogen Products (Commodities)
 - Applications ('Carbontech', Industrial, Agricultural)
 - Carbon Credits
- SEATA Technology
 - Hydrogen AND Carbon "Drawdown"
 - Key Points of Difference

Complementary Aspects to Assist 'Conventional' Green and Blue Hydrogen

Development Pathway

- Piloting toward Commercial scale systems
- SEATA R&D Centre, Glen Innes REZ, NSW
- Lessons Learned To Date
- Questions

"If your house is on fire, you don't tell the fireman to just let it simmer, you want to put the fire out ...we need carbon **removal** that actually **keeps the carbon out afterwards**"

Albert Bates, Co-author of 'Burn: Using Fire to Cool the Earth'

Normally, carbon is good...it's the building block of all Life

- 4th most abundant element on Earth
- Found in all living things
- Basis of cellular functions keeping things alive (DNA, proteins, sugars).
- The heart of healthy soils for plants, forests and food production.

- Chemical building block of many important materials (including carbon fibre, graphite and graphene)
- Binds with almost anything due to atomic structure.

→ ...we just don't want excess in the sky, we need it back down in our soils and in materials "Green carbon" is the basis of the <u>new carbon economy</u>

Chemistryland.com

$\begin{array}{l} 6\text{CO}_2 + 6\text{H}_2\text{O} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \\ & \bullet \ \textit{Photosynthesis} \end{array}$

• Glucose

• Cellulose

Carbon is Carbon (it's just in different forms)

• Polystyrene

• Polyester

The Need for Carbon Removal

- Anthropogenic CO₂ added to the atmosphere lasts between **300 to 1000 years**
- Even if <u>all</u> emissions stopped immediately, the earth is expected to continue to heat for decades, and would take thousands of years to cool to pre-industrial levels. (Source: Royal Society, March 2020)
- Target limit 1.5 degrees by 2100 via Net Zero 2050, with <u>half the reductions required by 2030</u>
 BUT we're currently tracking <u>well above worst case modelling</u>, toward 3.2 degrees
- → Carbon *removal* is urgently needed in addition to emissions reduction
- → Nature's existing carbon sinks need "turbo-charging" nature already indicates ways to do it

Annual cyclic variations are due to seasonal Photosynthesis

Carbon Removal – Beyond Net Zero Vs Climate Neutral

....in reality we need well <u>BEYOND</u> Net Zero. 1 to 1 CDR <u>is not enough</u> when tracking toward 3.2°C (not just 1.5°C)... → Urgent need for Gt scale CDR of all forms to "take the blanket off the planet"

"In 2050 the carbon net-negative economy needs to be as big as the oil industry is today." Mariannne Tikkanen, Puro Earth

Drawdown with Negative Emissions Technologies (NETs)

- Biochar is one of six key NETs identified by the IPCC (2018) urgently required for CDR to combat climate change
- In 2019 the IPCC established recognized methods demonstrating sequestration *permanence* for biochar

How does Biochar achieve Drawdown?

Net drawdown: Life Cycle Analysis (LCA) is required for '*cradle to grave*' assessment (upstream emissions, production and use)

SEATA Technology – Introducing *Circular* Thermal Treatment

Conventional Thermal Treatment (Waste to Energy)

- Incineration (Full Combustion)
- Conventional Gasification & Pyrolysis
- Gases only usable for electricity / heat (and typically not easily storable)
- Biochar up to ~35% yield by pyrolysis (by mass of infeed), biochar by gasification much lower.

SEATA Thermal Treatment (Waste to Resources / Commodities)

- <u>Undiluted</u> Syngas (no atm N₂) = economically recoverable chemical commodities ("building blocks")
- 2. Storable syngas (don't have to immediately combust/use)
- **3.** Significant carbon sequestration as solid char (1^{st} reactor) and potential secondary sequestration (high purity CO₂)
- 4. Conventional electricity/heat still available if needed
- 5. Genuine "bridging" technology best of both worlds

SEATA - Deconstruction to Chemical Building Blocks

SEATA Technology

...Hydrogen <u>with</u> significant carbon sequestration and co-benefits

Key Points Of Difference:

SEATA aims to harness <u>all</u> of the potential feedstock value into solid and gas products

- Rich undiluted Syngas (no atm Nitrogen as not air-blown) = economically recoverable gases (hydrogen and high purity food & medical grade CO₂)
- **Direct Heat Transfer** high thermal efficiency, consistent gas and char product quality.
- One process, multiple higher value outputs
- Genuine industrial scalability
- **Co-feeds/processing** (wide range)
- High moisture capability (up to 70%)
- **Bridging technology** adaptable to existing fossil fuel installations AND transition to renewables.
- Safe management of Halogens & Emerging Contaminants (e.g. PFAS)
- Improved Circularity and Sustainability
- Avoided Emissions <u>plus</u> CDR Sequestration
- Emerging secondary sequestration options
- Lower Cost, High Volume, High Quality Biochar

SEATA - Carbon Negative Hydrogen with co-benefits

Complementary Aspects to Assist Conventional Green & Blue Hydrogen

- Night-time generation to optimize CAPEX investment in integrated systems = 24/7 continuous hydrogen generation
- CO₂ Removal for overall system Net Zero and beyond (to Carbon-Negative systems)
- Carbon for battery storage technologies (solar/wind renewables)
- Sodium-Carbon Batteries potential to help turn desal brine wastes into resources to avoid ocean disposal Zero Liquid Discharge
- Biochar to increase biomethane & efficiencies from Anaerobic Digestion (another potential green hydrogen source)
- Potential to also assist blue and grey hydrogen (through high purity CO₂ economically into CCUS applications)
- Additional Revenue streams from co-benefit markets (carbon commodities & removal credits) to optimize CAPEX and OPEX
- Potential to add further emissions reduction and displacement/avoidance credits via CCUS applications (in addition to providing carbon removal credits).
- Provide additional "green" jobs, notably in rural and regional areas

SEATA vs Conventional Industrial Scale Gasification Plants including Methanation For Hydrogen

No ASU + No Power Plant + No High Pressure

Carbon Reports to Char in SEATA Plant

- Up to half infeed carbon reports to Char
- Gasification Matches Methane CO₂
- Process Efficiencies compensate for Carbon losses in Char

Chemical looping simplifies gasification

- Reduced Thermal Process Energy Losses
- No Air Separation Unit (ASU) \$\$\$ very high CAPEX
- No High Pressure Compressors
 - SEATA at atmospheric pressure
- No slag water quenching
 - No black water treatment plant
- No Power Units
 - Low power consumption
 - Co-generation plant unnecessary

SEATA Development Pathway – Pilot to Commercial

	Pilot 1 <300 kg/h (Clean Feeds)	Pilot 2 <500 kg/h ('Dirty' Feeds TBC)	Up to 5 tph Infeed Commercial Plant	Up to 40 tph Infeed Industrial Scale Plant
Timing Targets	Commence Q2 2022 (SEATA R&D Centre, Glen Innes NSW)	Q4 2022 (industrial site)	Q4 2023	~ 2025
Indicative Infeed (@7,500 hrs/yr, ~85% use)	2,250 tpa	3,750 tpa	37,500 tpa	300,000 tpa
Design Carbon Yield (conservative @~25% yield per tonne of infeed)	~560 tpa Commer (Climev 4,00	cial Scale Direct Air Capture vorks Project Orca, <u>2021</u>) = 0 tpa (8x 500 tpa units)	Up to ~9,400 tpa	75,000 tpa (current total Aust production <20,000 tpa)
Indicative Drawdown Via Biochar (using plant biomass feeds <u>only)</u> (+ up to ~25% more if all CO ₂ gas is also sunk into CCUS)	~1,400t CO ₂ e/yr (assuming net ~2.5 tCO ₂ e per tonne of biochar after LCA)	~2,300t CO₂e/yr (biomass feeds only)	23,500t CO ₂ e/yr (assuming net ~2.5 tCO ₂ e per tonne of biochar)	187,500t CO ₂ e/yr (assuming net ~2.5 tCO ₂ e per tonne of biochar)
Design H ₂ Yield (as % of infeed)	Flared Initially* <i>,</i> Then 7% by mass	7% by mass (recovery eg via PSA)	7-10% by mass (recovery via PSA or WSR)	10% by mass (Recovery eg via WSR)
Design Annual H₂ Yield (tpa, <u>un</u> compressed)	Nil initially* (157.5 tpa thereafter)	262.5 tpa	2625 – 3750 tpa	30,000 tpa

- Batch scale system construction and testing 2010-current (various feeds). <u>Continuous</u> Pilot scale system constructed/mods 2018-2022
- Estimated net production cost of hydrogen \$2-\$4/kg for commercial scale plant
- 10-15 FTE Green Jobs per plant (pilots through to commercial, providing falling unit costs of production)
- ** "Walk before Run"* approach...Pilot 1 trial per NSW EPA Energy from Waste Policy initially no energy recovery proposed. → Establish data as genuine reference site for subsequent DA Mod to allow energy recovery (e.g. for hydrogen trial).
- All scenarios pending funding secured. Bankable Feasibility Studies to be completed following pilot trials, ahead of commercial plant.

Sustainable & Waste Feedstocks

- Photosynthetic feedstocks (plant biomass) provides drawdown via atmospheric carbon removal) All other carbon-based feeds are carbon-recycling.
- Estimated ~up to 80M tonnes /yr of plant biomass residues that are wasted, burned insitu or landfilled in Australia (CSIRO 2017)
- NSW Biomass Residues ~22.5 Mtpa, of which cropping residues 12.2 Mtpa dominated by cereal straws 8.41 Mtpa (more info NSW DPI).
- + Non-competing energy crops on non-productive marginal land (not viable for food crops). Potential for carbon back into poor soils to rehabilitate lost farming land
- + Aquatic biomass Fastest growing biomass on earth. Conventional thermal treatment technologies require <20% moisture (thermally pre-dried). SEATA can handle
 wet wastes to 70% moisture (mechanically dried) when co-fed with high calorific feeds, with the moisture increasing hydrogen recovery.

Example Sustainable / Waste Biomass Feeds	Other Problematic Waste Potential Co-Feeds	Comments
Terrestrial Biomass:	End of Life Plastics (EOL)	'Dirty' feeds (including EOL plastics) = industrial chars
Agricultural and Horticultural <u>waste residues</u> (e.g. wheat straw, Sugar Cane bagasse, cotton trash, winery wastes, nut shells etc)	Recovered Ocean Plastics	
Invasive Species (including INS)	Biosolids & AD Digestates – Municipal, Agricultural	Biosolids require high calorific co-feeds to balance moisture content. If 'dirty' feed = industrial chars
Uncontaminated Wood Waste (e.g. untreated pallets), Plantation Forestry Residues (currently trash is burned) & Source-separated Commercial and Urban Green Waste	Organic Tailings / Coal	
Aquatic Biomass (fresh and marine):	Mixed Waste Organics (MWO), C&D Wood wastes / Treated & Engineered Timbers	
Algae	PFAS and Hydrocarbon Contaminated Soils, GAC & PAC	As above for biosolids high calorific co-feed required.
Kelp (Seaweed)	Medical Wastes (incl Covid 19 waste materials)	As above. Includes residues from kelp processing.

Carbon Commodity Applications - 'Horses For Courses'

- Amendment for Bulk Compost & Organic Fertilisers
- Feed Chars, Low Odour Animal Bedding / Litter

Example High <u>Value</u> Applications:

- High value Orchards/Horticulture
- Non-bulk/boutique distribution (e.g. bagged biofertilisers)
- Water filtration (cheaper substitute for activated carbon)

Audi AG unveils sustainable dealership model featuring carbon storing facade modules

Carbon batteries (emerging) Fillers in plastics

Example High <u>Value</u> Applications:

• Carbontech (broad range)

•

- Composites / Bio-plastics
- Contaminant Filtration (pseudo activated carbon)

Multi-national companies seeking to meet Net Zero are now specifically targeting biochar

Lessons Learned To Date Toward Piloting & Commercialisation

- Collaboration is pivotal Industry organisations such as New H2 (hydrogen) and ANZBIG (carbon) play important roles
- Early engagement with Regulators
- Challenges in funding new innovation
- Risk mitigation building trust with regulators, investors, suppliers, off-takers
- Commercial scale demonstrations needed at industry level (cant easily be done by individual companies)
- Patience

Thankyou. Questions?

E: john.winter@seatagroup.com.au M: (0407) 892 343 E: craig.bagnall@seatagroup.com.au M: (0408) 114242

"Wartime" investment in carbon capture must start now, researchers say

What could wartime levels of emergency funding buy us in the fight against global warming?

"During WWII no-one asked, 'Can we afford to fight the war?' We could not afford **not** to fight it. The same goes for the climate crisis." Joseph Stiglitz, 2019